William Hulme's Grammar School

The best in everyone"
Part of United Learning

Maths Calculation Policy

Addition

Year 1: Adding 1-digit numbers within 10

Use cubes, ten frames, bead strings, numicon
and other concrete resources to show adding
two 1-digit numbers. Children can explore
augmentation (increase one quantity by another)

and aggregation (combining 2 sets). \begin{tabular}{l}
Draw part-whole model with dots, draw counters

or use different bar models.

Use number lines to show addition. Children can

also use the addition sign.
\end{tabular}

Year 1/2: Add 1 and 2-digit numbers up to 20

| Concrete | Pictorial | AbStract |
| :--- | :--- | :--- | :--- | :--- |
| Use different concrete resources such as bead
 strings, numicon, straws and ten frames to show
 addition. When crossing ten, highlight that 10
 ones becomes 10 | | |
| chilen. | | |

Year 2: Add 3 one-digit numbers

Concrete	Pictorial	Abstract
Use numicon, ten frames with cubes to make 10 then add on remaining numbers.	Children can draw 10s frames and use bar model to show addition. Use part-whole model to show how 3 numbers makes a whole. 16 \square	Children use number bonds to make 10 then add remaining number. $7+6+3=16$ 10 $7+6+3=16$

Year 2: Add 1-digit and 2-digit numbers up to 100

Year 2: Add two 2-digit numbers up to 100

Concrete	Dictorial	Abstract
Children can use concrete resources to show addition. Exchange 10 ones to 1 ten. Use place value charts with base 10 or counters to show exchanging 10 ones for 1 ten.	Children to draw place value counters/base 10 on a place value chart. Part-whole and bar models can also be used to show the addition.	Children can use formal, written method with exchange. Children can alsoshow the addition using a number line using number bonds to 10 when crossingh 10. $38+23=61$

Year 3: Add numbers with up to 3 digits

Year 4: Add numbers with up to 4 digits

Year 5/6: Add numbers with more than 4 digits

Year 5: Add with up to 3 decimal places

Use place value counters or normal counters on a place

value chart to show addition including any exchanges. \begin{tabular}{l}
Use part whole and bar models to represent

additions and show how to add the ones,

tenths, hundredths, thousandths.

Children can now use the formal written

method.
\end{tabular}

Subtraction

Year 1: Subtract 1-digit numbers within 10

Concrete	Pictorial	Abstract
Use cubes, 10 frames, beads to create a number then remove some, then find out how many are left Introduce the idea of finding the difference. Now $-0000-000$	Use part-whole model or different bar models to represent what is done with objects.	A number track or number line can be used to show jumps. Encourage children to use an empty number line. Calculation can also be written using subtraction sign. $7-3=4$

Year 1/2: Subtract 1- and 2-digit numbers up to 20

Concrete	Pictorial	Abstract
Use concrete objects to physically take away and remove objects from the whole. When Crossing 10, make it clear that 1 ten is the same as 10 ones.	Use part-whole model or different bar models to represent what is done with objects. \square 14 6 .	Children can show counting back on a number linefirstly in 1s, then partittion the number to cross 10. $14-6=8$ 4) 2 $14-6=8$

Year 2: Subtract 1- and 2-digit numbers up to 100

Year 3: Subtract numbers with up to 3 digits

Year 4: Subtract numbers with up to 4 digits

Year 5/6: Subtract numbers with more than 4 digits

Use place value counters to show subtraction

Year 5/6: Subtract with up to 3 decimal places

Place Value counters on a place value grid and any exchanges
are shown.
Drawn representation of place value
counters on a grid. Part-whole model
and bar models can also be used.

Multiplication

Year 1/2: Solve 1-step multiplication problems using repeated addition

Children use objects such as bead strings, cubes, numicon to
make groups and add them using repeated addition. Number

lines and 10s frames can also be used to count in equal groups \begin{tabular}{l}
Children can use arrays and other

pictorial representations to show

making equal groups to add

\quad

lhildren will show a repeated addition

with numbers.
\end{tabular}

Year 3/4: Multiply 2-digit numbers by 1-digit numbers

Year 3/4: Multiply 3-digit numbers by 1-digit numbers

Year 5: Multiply 4-digit numbers by 1-digit numbers

Year 5: Multiply 2-digit numbers by 2-digit numbers

Year 5: Multiply 3-digit numbers by 2-digit numbers

Year 6: Multiply 4-digit numbers by 2-digit numbers

Division

Year 1/2: Solve one-step problems by sharing

Children share a range of concrete objects into equal

groups. Count how many objects in each group. \quad\begin{tabular}{l}
Children share using a range of pictorial

models including arrays, bar model and

groups

Year 1 children focus on using concrete and

pictorial models to divide. Introduce division

symbol in Year 2 .
\end{tabular}

Year 1/2: Solve one-step problems by grouping

Concrete	Pictorial	Abstract
Children make groups of a number and count the number of groups. This can be done with objects, numicon, bead strings, tens frames and other concrete resources	Children can draw groupings or showusing an array.	Year 1 children focus on using concrete and pictorial models to divide. Introduce division symbol in Year 2.
		$20 \div 5=4$
		There are 20 apples altogether. They are shared equally between 5 bags. How many apples are in each bag?
	$\bigcirc \bigcirc \bigcirc \bigcirc$	Children can use repeated subtraction on a nubmer line to show each group.
-00000-00000-00000-00000-		

Year 1/2: Divide a 2-digit by 1-digit number with no exchange

Concrete

Use concrete objects such as straws or place value counters to share the tens and ones into equal groups.

Pictorial
Children can draw place value chart and counters or show partitioning with the part-whole model.

Abstract

Children can use division sign and may be able to solve mentally.

$$
48 \div 2=24
$$

Year 3/4: Divide a 2-digit by 1-digit number with exchange

Children use base 10 or base value counters to share out equally on a place value chart. Exchange 1 ten for 10 ones. Start with equipment outside the place value chart.	Children can use flexible partitioning on a part whole model to divide. Other models can be used such as bar models.	Children may still show flexible partitioning when working out the answer.

Year 3/4: Divide a 2-digit by 1-digit number with remainders

Concrete Pictorial

nod

¢	:8:8:	53					$53 \div 4=13 \mathrm{r} 1$
${ }_{\text {mam }}^{\text {m }}$	\ldots						
mmm	...						
mmm	...						
$\underline{m m}$	$\cdots{ }^{-}$						
-00	0000008						
-	000						
\bigcirc	000	13	13	13	13	1	
\bigcirc	000						
\bigcirc	000						

Year 4/5: Divide a 2-digit by 1-digit number with remainders

Use place value chart and counters to make groups. Show exchanges where necessary. Any remainders are left outside the place value chart.	Draw place value chart and counters to make groups. Show exchanges where necessary. Remainders are shown outside the chart.	Children consider how many groups of 4 tens can we make? How many groups of 4 ones can we make? Show remainders where needed.

Year 4: Divide a 3-digit number by a 1-digit number

Concrete

Children can use place value counters and place value chart to shart counters into equal groups. Show any exchanges that are necessary. Start with place value counters outside the place value chart. Any remainders stay outside the chart.

Pictorial

Abstract
Use part-whole model or bar model to show equal groups. Use flexible partitioning where necessary. Show any remainders.

Flexible partitioning can still be used to support children. Show any remainders.

Year 5: Divide a 3-digit number by a 1-digit number by grouping

Concrete	Pictorial	Abstract
Use place value counters or prain countes on a pate		Short division method can be used to show division. Show remainders where necessary

Year 5: Divide a 4-digit number by a 1-digit number by grouping

Use place value counters or plain counters on a place value chart to make groups. Exchange counters where	Draw place value counters or plain counters on a place value chart to make	Short division method can be used to show division. Show remainders where necessary.

necessary. Remainders are left outside the place value chart.

groups. Exchange counters where necessary. Remainders are left outside the place value chart.

$$
8,532 \div 2=4,266
$$

	4	2	6	6
2	8	5	1_{3}	1_{2}

Year 6: Divide multiple digits by 2 digits

Concrete		Concrete and pictorial methods are now less effective. Children can write out multiples to support them. Show remainders where necessary.

Year 6: Divide multiple digits by 2 digits using long division

Year 6: Divide multiple digits by 2 digits using long division

